34 research outputs found

    Environmental Economic Hydrothermal System Dispatch by Using a Novel Differential Evolution

    Get PDF
    This paper proposes the Novel Differential Evolution (NDE) method for solving the environmental economic hydrothermal system dispatch (EEHTSD) problem with the aim to reduce electricity generation fuel costs and emissions of thermal units. The EEHTSD problem is constrained by limitations on generations, active power balance, and amount of available water. NDE applies two modified techniques. The first one is modified mutation, which is used to balance global and local search. The second one is modified selection, which is used to keep the best solutions. When performing this modified selection, the proposed method completely reduces the impact of crossover by setting it to one. Moreover, the task of tuning this factor can be canceled. Original Differential Evolution (ODE), ODE with the first modification (MMDE), and ODE with the second modification (MSDE), and NDE were tested on two different hydrothermal systems for comparison and evaluation purposes. The performance of NDE was also compared to existing methods. It was indicated that the proposed NDE is a very promising method for solving the EEHTSD problem

    Optimal scheduling of large-scale wind-hydro-thermal systems with fixed-head short-term model

    Get PDF
    © 2020 by the authors. In this paper, a Modified Adaptive Selection Cuckoo Search Algorithm (MASCSA) is proposed for solving the Optimal Scheduling of Wind-Hydro-Thermal (OSWHT) systems problem. The main objective of the problem is to minimize the total fuel cost for generating the electricity of thermal power plants, where energy from hydropower plants and wind turbines is exploited absolutely. The fixed-head short-term model is taken into account, by supposing that the water head is constant during the operation time, while reservoir volume and water balance are constrained over the scheduled time period. The proposed MASCSA is compared to other implemented cuckoo search algorithms, such as the conventional Cuckoo Search Algorithm (CSA) and Snap-Drift Cuckoo Search Algorithm (SDCSA). Two large systems are used as study cases to test the real improvement of the proposed MASCSA over CSA and SDCSA. Among the two test systems, the wind-hydro-thermal system is a more complicated one, with two wind farms and four thermal power plants considering valve effects, and four hydropower plants scheduled in twenty-four one-hour intervals. The proposed MASCSA is more effective than CSA and SDCSA, since it can reach a higher success rate, better optimal solutions, and a faster convergence. The obtained results show that the proposed MASCSA is a very effective method for the hydrothermal system and wind-hydro-thermal systems

    Coot Bird Behavior-Based Optimization Algorithm For Optimal Placement Of Thyristor Controlled Series Compensator Devices In Transmission Power Networks

    Get PDF
    This study presents the new application of Coot bird behavior-based optimization algorithm (COOTBA) for optimal placement of Thyristor Con- trolled Series Compensator (TCSC) devices in an IEEE 30-node transmission power network with three single objectives, including fuel cost, power loss, and voltage deviation. COOTBA is implemented for the system with one case without TCSC devices and three others with TCSC. COOTBA can reach smaller cost and loss than previous algorithms by from 0.04% to 3.78%, and from 6.7% to 40.3% in the first case with- out TCSC. In the second case with TCSC, COOTBA can reach smaller cost than others by from 0.008% to 0.66%. In addition, the comparisons of results from COOTBA in the three cases with TCSC indicate that TCSC should be optimized for both location and reac- tance, and the limitation of TCSC devices should be high enough. Thus, COOTBA is an effective algorithm for optimizing TCSC devices on transmission power systems

    Studies on Low Specific Mass NFR/MHD Power Generation System for Space Applications

    No full text

    An Improved Equilibrium Optimizer for Optimal Placement of Distributed Generators in Distribution Systems considering Harmonic Distortion Limits

    No full text
    This paper proposes an improved equilibrium optimizer (IEO) for determining optimal location and effective size of distributed generation units (DGUs) in the distribution systems in order to minimize the total power loss on distribution branches, investment cost, and operation and maintenance cost. In a good obtained solution, limits of voltage, current, and harmonic flows are also seriously considered, exactly satisfying predetermined ranges. Especially, individual harmonic distortion (IHD) and total harmonic distortion (THD) of bus voltage must fall into IEEE Std. 519. The proposed IEO is developed from the original equilibrium optimizer (EO), which was motivated by control volume mass balance models. This novel algorithm can effectively expand the search area and avoid the premature convergence to low-quality solution spaces. With the determined solutions from IEO, not only are the voltages well improved but also the harmonics are mitigated from the violated values down to the allowable values of IEEE Std. 519. Moreover, the total power loss is significantly reduced from 0.2110 MW to 0.0815 MW, 0.2245 MW to 0.07197 MW, and 0.3161 MW to 0.1515 MW for IEEE 33-bus, IEEE 69-bus, and IEEE 85-bus radial distribution systems, respectively. Not only that, the total cost of DGUs is also more economical and consumes only 3.4753million,3.4753 million, 3.2840 million, and $3.0593 million corresponding to the three systems for a 20-year planning period. The performance of the proposed algorithm is compared to three other implemented methods consisting of artificial bee colony (ABC) algorithm, salp swarm algorithm (SSA), and EO and eight previously published methods for the three test systems. The comparisons of results imply that IEO is better than other methods in terms of performance, stability, and convergence characteristics

    Optimal Reactive Power Generation for Transmission Power Systems Considering Discrete Values of Capacitors and Tap Changers

    No full text
    In this paper, an improved coyote optimization algorithm (ICOA) is developed for determining control parameters of transmission power networks to deal with an optimal reactive power dispatch (ORPD) problem. The performance of ICOA method is superior to its conventional coyote optimization algorithm (COA) thanks to modifications of two new solution generations of COA. COA uses a center solution to generate an update step size in the first solution generation and produced one new solution by using random factors to diversify the search space in the second solution generation. By tackling the drawbacks of COA, ICOA can reduce control parameters and computation steps, shorten execution time, and provide better results. ICOA is compared to its conventional COA for three standard IEEE systems of 30-, 57-, and 118-buses with continuous and discrete control variables. Moreover, three other algorithms such as water cycle algorithm (WCA), salp swarm algorithm (SSA), and sunflower optimization algorithm (SFOA) have been also implemented for further investigation of the real performance of the proposed method. All the applied methods are metaheuristic algorithms based on population and randomization. The result comparison from the test systems has indicated that ICOA can provide higher solution quality than other methods with reasonable execution time. Therefore, ICOA is a reliable tool for finding optimal solutions of the ORPD problem

    Improved Coyote Optimization Algorithm for Optimally Installing Solar Photovoltaic Distribution Generation Units in Radial Distribution Power Systems

    No full text
    This paper proposes an improved coyote optimization algorithm (ICOA) for optimizing the location and sizing of solar photovoltaic distribution generation units (PVDGUs) in radial distribution systems. In the considered problem, four single objectives consisting of total power losses, capacity of all PVDGUs, voltage profile index, and harmonic distortions are minimized independently while satisfying branch current limits, voltage limits, and harmonic distortion limits exactly and simultaneously. The performance of the proposed ICOA method has been improved significantly since two improvements were carried out on the two new solution generations of the conventional coyote optimization algorithm (COA). By finding four single objectives from two IEEE distribution power systems with 33 buses and 69 buses, the impact of each proposed improvement and two proposed improvements on the real performance of ICOA has been investigated. ICOA was superior to COA in terms of capability of finding higher quality solutions, more stable search ability, and faster convergence speed. Furthermore, we have also applied five other metaheuristic algorithms consisting of biogeography-based optimization (BBO), genetic algorithm (GA), particle swarm optimization algorithm (PSO), sunflower optimization (SFO), and salp swarm algorithm (SSA) for dealing with the same problem and evaluating further performance of ICOA. The result comparisons have also indicated the outstanding performance of ICOA because it could find much better results than these methods, especially SFO, SSA, and GA. Consequently, the proposed ICOA is a very effective method for finding the optimal location and capacity of PVDGUs in radial distribution power systems

    Optimal Reactive Power Generation for Radial Distribution Systems Using a Highly Effective Proposed Algorithm

    No full text
    In this paper, a proposed modified stochastic fractal search algorithm (MSFS) is applied to find the most appropriate site and size of capacitor banks for distribution systems with 33, 69, and 85 buses. Two single-objective functions are considered to be reduction of power loss and reduction of total cost of energy loss and capacitor investment while satisfying limit of capacitors, limit of conductor, and power balance of the systems. MSFS was developed by performing three new mechanisms including new diffusion mechanism and two new update mechanisms on the conventional stochastic fractal search algorithm (SFS). As a result, MSFS can reduce 0.002%, 0.003%, and 0.18% of the total power loss from SFS for the three study systems. As compared to other methods, MSFS can reduce power loss from 0.07% to 3.98% for the first system, from 3.7% to 7.3% for the second system, and from 0.92% to 6.98% for the third system. For the reduction of total cost, the improvement level of the proposed method over SFS and two other methods is more significant. It is 0.03%, 1.22%, and 5.76% for the second system and 2.31%, 0.87%, and 3.77% for the third system. It is emphasized that the proposed method can find the global optimal solutions for all study cases while SFS was still implementing search process nearby or far away from the solutions. Furthermore, MSFS can converge to the best solutions much faster than these compared methods. Consequently, it can be concluded that the proposed method is very effective for finding the best location and size of added capacitors in distribution power systems

    Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization

    No full text
    In the paper, a proposed particle swarm optimization (PPSO) is implemented for dealing with an economic load dispatch (ELD) problem considering the competitive electric market. The main task of the problem is to determine optimal power generation and optimal reserve generation of available thermal generation units so that total profit of all the units is maximized. In addition, constraints, such as generation limit and reserve limit of each unit, power demand and reserve demand, must be exactly satisfied. PPSO is an improved version of conventional particle swarm optimization (PSO) by combining pseudo gradient method, constriction factor and a newly proposed position update method. On the other hand, in order to support PPSO to reach good results for the considered problem, a new constraint handling method (NCHM) is also proposed for determining maximum reserve generation and correcting reserve generation. Three test systems with 3, 10 and 20 units are employed to evaluate the real performance of PPSO. In addition to the comparisons with previous methods, salp swarm optimization (SSA), modified differential evolution (MDE) and eight other PSO methods are also implemented for comparisons. Through the result comparisons, two main contributions of the study are as follows: (1) NCHM is very effective for PSO methods to reach a high success rate and higher solution quality, (2) PPSO is more effective than other methods. Consequently, NCHM and PPSO are the useful combination for the considered problem
    corecore